Non-Isomorphic Product Systems
نویسنده
چکیده
Uncountably many mutually non-isomorphic product systems (that is, continuous tensor products of Hilbert spaces) of types II0 and III are constructed by probabilistic means (random sets and off-white noises), answering four questions of W. Arveson.
منابع مشابه
From random sets to continuous tensor products: answers to three questions of W. Arveson
The set of zeros of a Brownian motion gives rise to a product system in the sense of William Arveson (that is, a continuous tensor product system of Hilbert spaces). Replacing the Brownian motion with a Bessel process we get a continuum of non-isomorphic product systems.
متن کاملDistinct Fuzzy Subgroups of a Dihedral Group of Order $2pqrs$ for Distinct Primes $p, , q, , r$ and $s$
In this paper we classify fuzzy subgroups of the dihedral group $D_{pqrs}$ for distinct primes $p$, $q$, $r$ and $s$. This follows similar work we have done on distinct fuzzy subgroups of some dihedral groups.We present formulae for the number of (i) distinct maximal chains of subgroups, (ii) distinct fuzzy subgroups and (iii) non-isomorphic classes of fuzzy subgroups under our chosen equival...
متن کاملAlmost uniserial modules
An R-module M is called Almost uniserial module, if any two non-isomorphic submodules of M are linearly ordered by inclusion. In this paper, we investigate some properties of Almost uniserial modules. We show that every finitely generated Almost uniserial module over a Noetherian ring, is torsion or torsionfree. Also the construction of a torsion Almost uniserial modules whose first nonzero Fit...
متن کاملCOUNTING DISTINCT FUZZY SUBGROUPS OF SOME RANK-3 ABELIAN GROUPS
In this paper we classify fuzzy subgroups of a rank-3 abelian group $G = mathbb{Z}_{p^n} + mathbb{Z}_p + mathbb{Z}_p$ for any fixed prime $p$ and any positive integer $n$, using a natural equivalence relation given in cite{mur:01}. We present and prove explicit polynomial formulae for the number of (i) subgroups, (ii) maximal chains of subgroups, (iii) distinct fuzzy subgroups, (iv) non-isomorp...
متن کاملGodsil-McKay switching and isomorphism
Godsil-McKay switching is an operation on graphs that doesn’t change the spectrum of the adjacency matrix. Usually (but not always) the obtained graph is non-isomorphic with the original graph. We present a straightforward sufficient condition for being isomorphic after switching, and give examples which show that this condition is not necessary. For some graph products we obtain sufficient con...
متن کامل